1. (24%) Determine whether the series converges absolutely or conditionally, or
diverges. In addition, please indicate the test you use.
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by integral test the corresponding series is diverge). So the original series is

conditionally converging.



2. (16%) Find the interval of convergence of the power series (Be sure to check the

for the convergence at the endpoints of the intervals)
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3. (12%) Use a power series to approximate | 01 cos(x?) dx with an error of less

than 0.001
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It is an alternating series, since 1 <0.001 therefore we know that
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4. (18%) Evaluate the following expression (Try to use the Basic series of Taylor
series and notice that the power series is a continuous function)
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5. (12%) Derive the Maclaurin series of f(x) = arccos(x) and g(x) =

arccos(2x?). In addition, calculate g©3(0)
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Substitute 0 into the equation we have C = g Therefore,
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6. (10%) Find the area of the shaded region bounded by the curves r = a(1 +
cos(8)) and r = asin(6)
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7. (10%) Find the area of the surface formed by revolving the polar graph r = e%?

about the 6 = g over the interval 0 < 0 < g
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8. (8%) Determine whether | 01 sin()

dx is converge or diverge.
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